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A B S T R A C T   

Due to the difficulty of direct field measurement, soil hydraulic properties are often obtained in laboratory 
settings using small undisturbed soil samples or estimated indirectly through pedotransfer functions (PTFs). The 
pseudo-continuous pedotransfer function (PCNN-PTF) is a neural network-based approach for estimating soil 
hydraulic properties. The main objective of this study was to use field soil moisture and tension data to assess soil 
water retention curves obtained from the HYPROP-WP4C system and the HYPROP-based PCNN-PTF. The in-situ 
soil water retention data were simultaneously acquired using Acclima TDT and MeterGroup MPS-6 sensors 
(every 30 min, May to September 2020) from 11 hybrid bermudagrass plots under different irrigation treatments 
in Riverside, California. We utilized extended evaporation and dewpoint methods using HYPROP-WP4C (Meter 
Group Inc., USA) devices to obtain lab-measured SWRCs. In addition, SWRCs were estimated from Rosetta 
(Schaap et al., 2001) and by inverse modeling in HYDRUS-1D utilizing in-situ moisture retention data. Although 
the hysteresis impacted field data, overall, there was a good agreement between the in-situ and lab water 
retention data for most samples, especially within the pF range of 2–3.5. The PCNN-PTF outperformed Rosetta in 
estimating laboratory (RMSE=0.034 cm3 cm− 3 vs 0.063 cm3 cm− 3) and in-situ soil moisture data (RMSE=0.048 
cm3 cm− 3 vs 0.082 cm3 cm− 3). Inverse modeling of in-situ data also performed well in estimating the SWRC 
(RMSE=0.043 cm3 cm− 3); however, further attention is required in dry and saturated soil conditions. We 
developed a simple, free, and easy-to-access tool called PC-PTF for estimating the SWRC using the PCNN-PTF 
model evaluated in this study. The PC-PTF can be accessed from the Verdi Water Management Group website: htt 
p://www.ucrwater.com/software-and-tools.html.   

1. Introduction 

Direct field measurement of soil hydraulic properties poses signifi-
cant challenges. As a result, these properties are often obtained in the 
laboratory using small, undisturbed soil samples or indirectly estimated 
through pedotransfer functions (PTFs) based on the readily available 
basic properties of the soil. Equilibrium methods, such as pressure plate 
extractors and sandbox apparatus, are traditionally employed in the 
laboratory to acquire water retention data. These methods involve 
establishing hydrostatic equilibrium between a soil sample and a porous 
medium at a certain pressure head. 

The HYPROP system (Hydraulic Property Analyzer, Meter Group 
Inc., Pullman, WA, USA) is an automated evaporation-based benchtop 
laboratory system (Schindler et al., 2010b, 2010a) that is increasingly 
becoming the standard approach for measuring soil hydraulic properties 
in the laboratory (Haghverdi et al., 2018; Schindler et al., 2016). It has 

several advantages over traditional equilibrium methods, such as pres-
sure plate extractors and sandbox apparatus, including the rapid mea-
surement of high-resolution soil water retention and hydraulic 
conductivity data in wet and intermediate ranges, with minimal vari-
ability between replicates (Schelle et al., 2013b). The HYPROP mea-
surements can be complemented with dry-end data from the WP4C Dew 
Point PotentioMeter instrument (METER Group, Inc., Pullman, WA, 
USA) to capture the entire soil water retention curve (SWRC). 

The parametric and pseudo-continuous PTFs (PC-PTFs) can be used 
to estimate the SWRC (Haghverdi et al., 2012; Patil and Singh, 2016; 
Singh et al., 2020). The PC-PTF is a strategy for developing PTFs for 
continuous soil water retention estimation, employing machine learning 
approaches like artificial neural networks (PCNN-PTF) and support 
vector machines (Haghverdi et al., 2014). This approach learns the 
shape of the SWRC directly from the actual measured water retention 
data, making high-resolution measured data crucial for adequate model 
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training (Haghverdi et al., 2018). Haghverdi et al. (2018) developed the 
first HYPROP-based water retention PCNN-PTFs models using a Turkish 
data set and reported promising results. Then, the first international 
evaporation/HYPROP-based water retention and hydraulic conductivity 
PCNN-PTFs were developed by Singh et al. (2021, 2020), utilizing the 
international dataset published by Schindler and Müller (2017). The 
outstanding performance of these PTFs (RMSE of water retention =
0.043 cm3 cm− 3, RMSE of hydraulic conductivity (Log K(h)) = 0.52) 
positions them among the most accurate international PTFs available for 
estimating soil hydraulic properties. 

The reliability of PTFs developed using laboratory data should be 
examined when applied to new soils outside their training bounds and 
under field conditions. Laboratory measurements using small soil sam-
ples may not accurately represent actual field conditions due to scale 
mismatch and field variability (Hopmans et al., 2002). While some 
studies have compared in-situ to laboratory-measured SWRCs (e.g., 
Campbell et al., 2018; Ishimwe et al., 2018) and evaluated laboratory- 
based PTFs against field data (e.g., Wassar et al., 2016, and Gribb 
et al., 2009), there is a notable gap in research comparing HYPROP- 
WP4C data and HYPROP-based PTFs with in-situ soil water retention 
measurements. 

Inverse modeling (IM) serves as an alternative method for estimating 
hydraulic model parameters using in situ data collected through tran-
sient water flow experiments (Hopmans et al., 2002; Šimůnek et al., 
1998a, 1998b). IM allows for the simultaneous estimation of water 
retention and hydraulic conductivity functions, eliminating the need for 
achieving hydrostatic equilibrium (Hopmans et al., 2002; ̌Simůnek et al., 
1998a, 1998b). Inverse methods operate by minimizing an objective 
function that gauges the deviations between measured and predicted 
variables, such as water retention data. Several studies have utilized the 
IM technique to estimate hydraulic parameters with the HYDRUS model 
(da Silva et al., 2020; Ket et al., 2018; le Bourgeois et al., 2016; Naseri 
et al., 2022; Pinheiro et al., 2019; Rashid et al., 2015; Šimůnek et al., 
1999). To achieve a unique solution, input data with a broad range of 
water content, soil pressure head, and additional retention curve data 
obtained through simultaneous measurement of pressure head and 
water content in the soil profile is necessary (Šimůnek et al., 1999). 
Recent advancements in soil sensing technologies offer scientists a tool 
for rapid and accurate measurement of water content and tension. Wang 
et al. (1998) employed simultaneous measurements of soil water content 
and tension from TDR probes and tensiometers, respectively, to develop 
and test infiltration models through IM. Schelle et al. (2013a) proposed 
that instrumentation of weighable lysimeters equipped with soil mois-
ture and tension sensors can significantly enhance parameter estimation 
through the inverse solution. In their IM experiments, Rezaei et al. 
(2016) utilized tension disc infiltration measurements along with TDR- 
derived soil moisture content to compare in-situ and laboratory soil 
hydraulic properties. However, with some exceptions, there is a shortage 
of IM studies employing simultaneous in-situ measurements of soil 
tension and water content for estimating the SWRC. 

The main objective of this study was to assess soil water retention 
data obtained from the HYPROP-WP4C system and the HYPROP-based 
PCNN-PTF approach, utilizing in situ soil moisture sensor measure-
ments from irrigated turfgrass research plots in inland southern Cali-
fornia. Additional objectives included (I) evaluating the performance of 
HYPROP-based PCNN-PTFs against the Rosetta model (Schaap et al., 
2001), one of the most widely used parametric PTFs, and (II) comparing 
the parametrization of the van Genuchten model (van Genuchten, 1980) 
using HYPROP-WP4C data with those calculated by IM using the 
HYDRUS-1D model and in-situ soil moisture and tension data. 

2. Material and methods 

2.1. Study area and irrigation trial 

The study site was located at the University of California Riverside 

Agricultural Experiment Station (33◦57′47.0″N 117◦20′13.4″W) in 
Riverside, California, with a well-drained low-runoff Hanford coarse 
sandy loam soil (websoilsurvey.sc.egov.usda.gov). The study area con-
sisted of 12 hybrid bermudagrass irrigation research plots (3.7 m × 3.7 
m), each receiving a different irrigation treatment via a Weathermatic 
Smartline 4800 controller (Telsco Industries, Inc., Garland, TX, USA). 
Irrigation levels varied from 39 % to 66 % reference evapotranspiration 
(ETo). Irrigation frequency for half the plots was set to 3 days per week, 
while the remaining plots were under an “on-demand” irrigation sce-
nario where the smart controller autonomously regulated the frequency 
based on the evaporative demand. The soil characteristics of the 
research plots are shown in Table 1. One plot was excluded from this 
study due to sensor malfunction issues. Readers are referred to (Hagh-
verdi et al., 2021) for more information about the irrigation trial. 

2.2. In situ measurements 

Near-surface soil moisture data were collected from all 11 plots be-
tween May and September 2019. Each plot was instrumented with a pair 
of SDI-12 Digital Time Domain Transmissometer (TDT) soil water con-
tent (Acclima Inc., Meridian, ID, USA) and MPS6 (METER Group, Inc., 
Pullman, WA, USA) soil tension sensors placed side-by-side at approxi-
mately 10 cm of depth. The DataSnap (Acclima Inc., Meridian, ID, USA) 
and EM50 (METER Group, Inc., Pullman, WA, USA) loggers were used to 
collect soil moisture data every 30 min. The TDT sensor has a mea-
surement range of 0 to 100 % volumetric water content (VWC) with a 
0.06 % resolution and accuracy of ± 2 %. The MPS6 sensor has a 
measurement range of 9 to 100,000 kPa with a 0.1 kPa resolution and 
accuracy of ± (10 % of reading + 2 kPa) from 9 to 100 kPa, according to 
the manufacturer. The MPS6 determines the water potential of its 
porous ceramic disc, which comes into hydraulic equilibrium with its 
surrounding soil. The raw data were filtered for obvious measurement 
errors outside the physically possible ranges. If either of the two mea-
surements (i.e., soil moisture tension and TDT readings) did not contain 
meaningful readings, data corresponding to that timestamp was 
disregarded. 

Two soil cores (250 cm3 stainless-steel cylinders – inside diameter: 8 
cm, height: 5 cm) from each plot were collected from areas surrounding 
the soil moisture sensors in early 2020. Initially, all the plots were irri-
gated to refill the shallow layer to saturation. Soil coring started after a 
few days when the plots reached their field capacity, with two plots 
sampled weekly. Sampling continued for approximately one month. Soil 
moisture sensor readings from all plots were recorded just before soil 
sampling to develop site-specific linear calibration equations, assuming 
no sensor-to-sensor variability. No irrigation was applied during the 
sampling period, leading to a gradual decline in soil moisture due to 
transpiration and deep percolation. The composite dataset was assumed 
to represent the wet-to-dry SWRC. 

For the TDT sensors, the factory-calibrated raw measurements 
(VWCsensor) were plotted against the measured volumetric water content 

Table 1 
Irrigation treatments and soil properties at the experimental plots.  

ET based Irrigation 
treatment (%) 

Irrigation 
frequency 
(days/week) 

Clay 
(%) 

Sand 
(%) 

Silt 
(%) 

BD (g/ 
cm3) 

39 3 6 24 70  1.81 
39 7 4 21 75  1.73 
44 3 6 27 67  1.73 
44 7 7 39 54  1.74 
49 3 7 32 61  1.74 
49 7 9 37 54  1.74 
56 3 8 32 60  1.65 
62 3 8 22 70  1.9 
62 7 2 38 60  1.63 
66 3 4 31 65  1.62 
66 7 9 38 53  1.82  
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data (VWCcalibrated) to develop the following linear calibration equation: 

VWCcalibrated = 0.6909 × VWCsensor +0.0568;R2 = 0.69 (1) 

For the MPS6 sensors, the measured volumetric water content data 
were converted to equivalent soil tension values using the VG equation 
with parameters obtained from HYPROP measurements. Then, the MPS6 
soil tension data (Tensionsensor) were plotted against the back-calculated 
soil tension (Tensioncalibrated) values to develop the following linear 
calibration equation. 

Tensioncalibrated = 0.8667 × Tensionsensor +11.706;R2 = 0.92 (2)  

2.3. Laboratory measurements 

The laboratory SWRCs were determined for the soil cores using the 
HYPROP-WP4C system. All samples were saturated. Subsequently, two 
vertically aligned tensiometers were installed in two holes created with 
a small auger, positioning the tips of the tensiometers 1.25 cm below and 
above the center of the cylinder (2.5 cm). Throughout the HYPROP 
measurement campaigns, the soil tensions at the two tensiometers were 
automatically monitored using HYPROP-VIEW software, while the 
weight of each sample was continuously recorded. The measurement 
campaign spanned 5 to 7 days for each soil sample. Following the 
completion of HYPROP measurements, the WP4C was employed to 
measure dry-end (~pF>4) soil water retention data. A total of 4–5 
subsamples (each ~ 7 cm3) were collected from the top, middle, and 
bottom of the original undisturbed sample with varying water contents. 
These subsamples were sliced off the original sample and stored in 
capped small sample cups (15 cm3 capacity). The soil tension of each 
subsample was measured using the WP4C, and the weight of the sample 
was immediately recorded. Finally, oven-dry weight was obtained for 
the subsamples and the remaining soil material from HYPROP, which 
was used to determine the dry bulk density (BD) of the soil (Blake and 
Hartge, 2018). 

The soil hydraulic parameters obtained by fitting the VG model (Eq. 
(3)) for each soil sample during the evaporation experiment were 
inputted from the HYPROP-FIT software. HYPROP-FIT works based on a 
revised version of SHYPFIT2.0 (Peters and Wolfgang, 2015) to estimate 
the best parameter combination. 

θ(h) = θr +
θs − θr

[1 + (αh)n
]
m (3)  

m = 1 − 1/n (4)  

where θ is volumetric moisture content [cm3 cm− 3] at matric potential h 
[cm]; θr [cm3 cm− 3]; and θs [cm3 cm− 3] are residual and saturated 
moisture contents, respectively; α [cm− 1] and n are curve-shaped pa-
rameters. Large values of n result in a steeper curve and lower values of α 
indicate a larger air-entry value. 

2.4. Pedotransfer functions 

The laboratory measured data via the HYPROP-WP4C system and 
field data collected via soil moisture sensors were used to evaluate the 
performance of PCNN-PTF (Singh et al., 2020) and Rosetta (Schaap et al., 
2001). Fig. 1 shows the textural distribution of the soil cores collected 
from the hybrid bermudagrass irrigation plots. The PCNN-PTF (a three- 
layer feed-forward perceptron NN model) was trained using a combi-
nation of the international dataset published by (Schindler and Müller, 
2017) and a Turkish dataset by (Haghverdi et al., 2018). Soil texture 
(SSC), BD and soil tension were used as inputs to the model, and the 
output was VWC. The hydraulic properties of the soils in both datasets 
were measured using the evaporation experiments and the HYPROP 
system. Readers are referred to (Singh et al., 2020) for more information 
about the development of the international HYPROP-based PCNN-PTF 
used in this study. 

SWRC estimations using the parametric model Rosetta were also 
made with SSC and BD as inputs. Rosetta is an ANN-based PTF that uses 
a hierarchical approach to suit specific cases of input data available to 
estimate water retention VG parameters, saturated hydraulic conduc-
tivity (Ks), and unsaturated hydraulic conductivity. Rosetta was used for 
estimating the VG parameters of the SWRC utilizing the nonlinear least- 
squares optimization program RETC (van Genuchten, 1991): 

2.5. Inverse modeling using HYDRUS-1D 

In this study, the HYDRUS-1D (Rassam et al., 2018; Šimůnek et al., 
1998a, 1998b) model was utilized to estimate the in-situ soil water 
dynamics at the burial depth of the sensors (10 cm). HYDRUS-1D is a 
computer program that applies the Richards equation (Richards, 1931) 
for unsaturated, non-steady flow in the soils. 

∂θ
∂t

=
∂
∂z

[

K(h)
(

∂h
∂z

+ 1
)]

(5) 

Fig. 1. (a) Soil textural distribution of the soil samples used for development (blue) and validation (red) of the PCNN-PTF., (b) lab and in-situ measured SWRCs for the 
validation soils. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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where t is time [T], z is the vertical distance [L], h is the soil moisture 
tension [L], and K is the hydraulic conductivity [L/T] which is a function 
of h. 

Soil water flow simulation using HYDRUS-1D requires knowledge of 
the hydraulic parameters, head and flow boundaries, atmospheric 
boundary conditions, and time-dependent inputs. Simulations were 
performed at a daily timestep to better highlight the changes in soil 
moisture dynamics due to variations of meteorological conditions such 
as rainfall and evapotranspiration fluxes. The free/zero-gradient 
drainage boundary condition is suitable for water flow simulation of 
unsaturated soil in which the soil domain of interest is not affected by 
groundwater. Therefore, a free drainage boundary condition was 
assigned to the bottom of the flow domain, and an atmospheric 
boundary condition was assigned to the soil surface. The atmospheric 
boundary condition at the surface was described using ETo measure-
ments taken from the nearest California Irrigation Management Infor-
mation System (CIMIS) station #44, located about 260 m from the site. 
The time-dependent inputs are the combined irrigation and precipita-
tion rate [LT− 1] (sum of the values for input into the model), evapora-
tion rate [LT− 1], and transpiration rate [LT− 1]. The evaporation (E) and 
transpiration (T) rates must be input as separate values, which was 
achieved as follows (Belmans et al., 1983): 

E = ET.e− k.LAI (6)  

T = ET − E (7)  

where k is the extinction coefficient for solar radiation and LAI is the 
plant’s leaf area index [L2/L-2(− |-)]. A k value of 0.39 was used for 
HYDRUS-1D simulations. The LAI of hybrid bermudagrass was reported 
to be low (around 2), especially in the late summer months (Fontanier 
and Steinke, 2017). Thus, our study assumed LAI to be 2 from May to 
September. 

The observation nodes were set at 10 cm following the location of the 
TDT and MPS6 sensors. At the beginning of the simulation in the soil 
profile domain, the soil moisture was set to the initial observation from 
TDT sensors. HYDRUS-1D estimates root water uptake via the model 
proposed by (Feddes et al., 1978), where root water uptake rates are 
assigned according to the soil tension at the point of interest. The root 
distribution was assumed to be 1.0 (maximum number of roots possible) 
between the soil surface and a 10 cm depth and to decrease linearly from 
1.0 to 0.0 (no roots) from a 10 cm depth to a 50 cm depth. 

Inverse solutions to flow problems can be solved where measured 
data is used to estimate soil hydraulic parameters. For the inverse 
modeling utilizing HYDRUS-1D, the objective function was minimized 
using the Levenberg-Marquardt nonlinear minimization (Marquardt, 
1963). For the optimization of the initial VG parameters (Table 2), a 

combination of three sets of data, i.e., the water content in daily time 
steps θ(t) from the TDT sensors, soil water tension in daily time steps h(t) 
from the MPS6 sensors, retention pairs θ(h) from simultaneous mea-
surements of TDT and MPS-6 were used. Raw sensor data were averaged 
to obtain mean daily values. All parameters of the VG equation (Eq. (3)) 
for the SWRC were optimized. Ks data were obtained from the HYPROP- 
FIT. 

2.6. Performance assessment 

To evaluate the performance of the SWRCs estimated by PCNN-PTF 
and Rosetta PTF, the root mean square error (RMSE, Eq. (8)), mean 
absolute error (MAE, Eq. (9)), mean biased error (MBE, Eq. (10)), and 
correlation coefficient (R, Eq. (11)) were calculated: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Ei − Mi)

2

√

(8)  

MAE =
1
n
∑n

i=1
|Ei − Mi| (9)  

MBE =
1
n
∑n

i=1
(Ei − Mi) (10)  

R =

∑n
i=1(Ei − E)(Mi − M)

∑n
i=1(Ei − E)2∑n

i=1(Mi − M)
2 (11)  

where E and M are the estimated and measured VWC, respectively;E and 
M are the mean estimated and measured VWC, respectively, and n (lab 
= 1016; in-situ = 15787) is the total number of measured water retention 
points for each model. In addition, the error statistics were separately 
calculated for the wet (pF≤2), intermediate (2 < pF≤3), and dry regions 
(pF>3) of the SWRC. 

3. Results and discussion 

3.1. Comparing the in-situ and laboratory measurements of the SWRCs 

The characteristics of the soil samples collected from the irrigated 
hybrid bermudagrass plots are shown in Table 1. The texture and water 
retention data are shown in Fig. 1. Samples belonged to loamy sand (n =
1) and sandy loam (n = 10) soil textures. The BD values ranged from 
1.49 to 1.90 g cm− 3 with an average of 1.72 g cm− 3. The slight vari-
ability in soil texture and BD among samples shows that spatial het-
erogeneity exists even in relatively small areas. The bermudagrass plots 
were under deficit irrigation treatments, with the highest irrigation 

Table 2 
Van Genuchten (VG) parameters obtained from HYPROP-FIT, Rosetta, and Inverse modeling (IM) for soil samples from each irrigation treatment.  

Irrigation treatment Fitted VG parameters 
(HYPROP-FIT) 

Estimated VG parameters 
(Rosetta PTF) 

Optimized VG parameters 
(IM, HYDRUS-1D)  

θr θs α n Ks L θr θs α n Ks L θr θs α n 

39–3  0.03  0.30  0.012  1.38  1.10  − 2.27  0.03  0.30  0.059  1.36  0.78  0.5  0.06  0.21  0.003  1.29 
39–7  0.04  0.33  0.022  1.52  8.76  − 0.49  0.03  0.32  0.054  1.53  38.78  0.5  0.00  0.29  0.038  1.11 
44–3  0.04  0.32  0.020  1.46  1.81  − 2.18  0.03  0.32  0.053  1.36  22.92  0.5  0.07  0.29  0.014  1.20 
44–7  0.01  0.33  0.012  1.31  2.69  − 0.06  0.03  0.30  0.040  1.30  14.47  0.5  0.00  0.26  0.001  1.30 
49–3  0.02  0.32  0.017  1.34  5.92  0.37  0.03  0.31  0.049  1.31  17.12  0.5  0.04  0.27  0.009  1.25 
49–7  0.00  0.35  0.016  1.24  14.30  0.08  0.03  0.31  0.037  1.29  12.48  0.5  0.00  0.31  0.004  1.22 
56–3  0.01  0.34  0.018  1.29  5.26  − 0.48  0.03  0.33  0.037  1.36  22.11  0.5  0.15  0.27  0.005  1.35 
62–3  0.00  0.31  0.006  1.27  1.63  − 2.48  0.03  0.28  0.059  1.31  11.31  0.5  0.15  0.26  0.011  1.29 
62–7  0.03  0.37  0.021  1.34  1.62  − 3.11  0.03  0.32  0.045  1.37  35.36  0.5  0.09  0.30  0.016  1.29 
66–3  0.00  0.36  0.053  1.26  22.20  − 1.75  0.03  0.33  0.046  1.41  36.88  0.5  0.08  0.32  0.032  1.21 
66–7  0.00  0.37  0.010  1.25  3.27  − 0.96  0.03  0.29  0.045  1.25  8.92  0.5  0.14  0.30  0.010  1.46 

θr(cm3 cm− 3): residual moisture content; θs (cm3 cm− 3): saturated moisture content; α [cm− 1] and n are curve shape parameters; m = 1–1/n; Ks: saturated hydraulic 
conductivity (cm d-1); L is an empirical parameter.  
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treatment being 66 % ETo. This allowed us to have a high range of the in- 
situ soil moisture tension observed in the field, especially from the 
lowest deficit irrigation treatments, therefore providing retention data 
ranging from pF (the logarithmic transformation of soil tension in cm of 
water) equal to 2 up to roughly 4.2 (permanent wilting point) for most of 
the plots. The laboratory-obtained SWRCs covered the entire curve 
range from saturation to air-dry tension, with HYPROP data covering the 
wet and intermediate ranges and WP4C data covering the dry end. 

Fig. 2 depicts a time series of soil moisture and tension data 
measured in the field at 30-minute intervals. Fig. 3 shows the measured 
and estimated SWRCs in this study. An abrupt steepening of the slope 
close to the saturation indicates a distinct air-entry value, the tension at 
which moisture begins to drain from the soil pores. The lab-obtained 
SWRCs had a similar shape, indicating comparable air entry and the 
sudden reduction in soil moisture as tension increased. The MP6 sensors 
had an upper limit of − 9 kPa (pF = ~2), which is the air entry value of 
the sensor, thus resulting in a lack of in-situ water retention points close 
to saturation (Campbell et al., 2018). There were only a few moisture 
retention data points in the wet range for the in-situ data because most 
of the data were greater than the pF value of 2. For instance, only ~ 1.5 
% of retention points were in the wet region for the data collected at the 
30-minute interval for 2019, ~70 % of data lies in the intermediate 
range, and ~ 28 % in the dry region. There were no retention points in 
the wet region for the daily average of data collected during the summer 

of 2019. 
Previous studies have shown that differences between laboratory and 

field measurements of soil hydraulic properties are attributed to several 
factors, including hysteresis and entrapped air (Bordoni et al., 2017; 
Pirone et al., 2014; Schuh et al., 1988), inadequate representation of 
large pores in the laboratory (Field et al., 1984), spatial variability, 
sample disturbance (Field et al., 1984; Ishimwe et al., 2018; Schuh et al., 
1988), and sample size-related scale effects (Pachepsky et al., 2001; 
Schuh et al., 1988). The in-situ SWRCs demonstrated good agreement 
with the lab SWRCs for most samples, particularly within the pF 2 up to 
approximately 3.5 range. Beyond this point, a more gradual decline in 
soil moisture was observed as tension increased. This finding aligns with 
a study conducted by Campbell et al. (2018) on similar soil textures, 
where they reported strong agreement between lab and in-situ data for 
pF ranging from around 2 to 3.7 for sandy loam and loamy sand. 
Notably, Campbell et al. (2018) also employed HYPROP and MPS6, 
contributing to the observed similarities between the findings of the two 
studies. However, our field data exhibited more scatter, primarily 
because Campbell et al. (2018) only used drying in situ data, excluding 
wetting data that could reveal distinct patterns and deviations from 
drying data due to hysteresis. In contrast, Iiyama’s in-situ SWRCs 
showed approximately 10 % smaller VWC than the lab SWRCs (Iiyama, 
2016). This difference was attributed to the natural conditions of hys-
teresis, causing the wetting process to consistently yield smaller 

Fig. 2. Soil volumetric water content (VWC, cm3 cm− 3) and soil tension (pF=logarithm of soil tension in cm) time series as measured by the sensors installed at 
different plots during 2019 at the 30-minute time step. Shaded regions represent the data used in this study when ET-based irrigation treatments were implemented. 
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Fig. 3. Comparison of measured soil water retention data in the laboratory and field with estimated SWRCs using PCNN-PTF, Rosetta, and inverse modeling via 
HYDRUS-1D. 
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moisture values than the drying process for a given soil tension. We did 
not observe the same pattern in all our plots. This is partly attributed to 
different instruments and sensors used in the two studies for laboratory 
and field measurements. Iiyama (2016) utilized the hanging-water- 
column and pressure-plate methods for lab SWRC measurement, 
employing capacitance-type soil moisture sensors and tensiometers in 
the field. While tensiometers generally offer high accuracy in the wet 
range, capacitance-type soil moisture sensors typically exhibit low ac-
curacy (Evett et al., 2012). 

Table 2 shows the VG parameters from HYPROP-FIT, Rosetta and IM. 
Since IM was based on the in-situ soil moisture and tension observations, 
variations in the values of VG parameters obtained from IM and 
HYPROP-FIT allowed us to identify the differences between laboratory 
and in-situ SWRCs. The VG parameters α and n affect the steepness of the 
SWRC, where α relates to the inverse of air-entry value and n indicates 
the steepness of the slope. The parameter α ranged from 0.006 to 0.53 
with an average of 0.019 for the lab SWRCs and from 0.001 to 0.038 
with an average of 0.013 for the in-situ VG parameters obtained through 
IM. The parameter n ranged from 1.24 to 1.52 with an average of 1.33 
for the lab SWRCs and from 1.11 to 1.46 with an average of 1.27 for the 
in-situ SWRCs. This is also evident in Fig. 3, as the air-entry value is 
lower, and the steepness of the SWRC is higher for the lab-obtained 
curves than the in-situ curves. 

3.2. Performance of the models 

3.2.1. In-situ SWRCs 
Table 3 summarizes the performance statistics of the PCNN-PTF and 

Rosetta for laboratory and in-situ water retention measurements. PCNN- 
PTF showed RMSE of 0.048 cm3 cm− 3 for the in-situ data collected at 
intervals of 30 min during the year 2019, and MBE of − 0.012 cm3 cm− 3 

was observed. SWRCs estimated using parameters obtained from Rosetta 
performed worse than the PCNN-PTF with RMSE=0.082 cm3 cm− 3. 
Rosetta showed a tendency to underestimate VWC, indicated by MBE of 
− 0.079 cm3 cm− 3 for in-situ data, also evident in Fig. 4. Correlation 
coefficients (R) of 0.91 and 0.90 were observed for PCNN-PTF and 
Rosetta, respectively. The PCNN-PTF performed better than Rosetta in 
estimating the in-situ SWRCs. 

Hysteresis refers to the changes in the SWRC due to wetting and 
drying of the soil in the field. In-situ soil moisture can also be affected by 
physical processes such as hysteresis, somewhat evident in 30-min soil 
moisture data of plots under 62 % ETo-3d wk− 1, 62 % ETo-on-demand, 
66 % ETo-3d wk− 1, and 66 % ETo-on-demand irrigation treatments. 
Hysteresis measurement can be challenging both in the laboratory and 
field due to the lack of enough data to quantify the wetting and drying 
cycles. Because of the complexities, only the drying hydraulic path is 
generally considered in laboratory measurements, although drying and 
wetting alternate in the field. Numerous efforts continue to address the 
effects of hysteresis on SWRC measurements (Bordoni et al., 2017; 
Hedayati et al., 2020; Iiyama, 2016; Pirone et al., 2014). It is worth 
mentioning that the current implementation of the PCNN-PTF ignores the 
effect of hysteresis since the lab measurements using HYPROP are made 
on the drying hydraulic path. We separately calculated the error terms 
for drying and wetting cycles to determine if PCNN-PTF performed better 
for drying than wetting data. However, we observed no difference be-
tween the two (data not shown here). This suggests that lab-based PTFs 

developed based on drying data do not necessarily work better for 
drying than wetting cycles in field conditions. Furthermore, Iiyama 
(2016) suggested that soil moisture hysteresis can be ignored in the field 
under dry conditions as numerous repetitions of wetting and drying 
cycles may have occurred while soil moisture remains within the 
routinely observed range. The same could be said for our study since the 
plots were maintained under deficit irrigation for extended periods 
(Haghverdi et al., 2021). 

3.2.2. Laboratory SWRCs 
For the lab measurements using the HYPROP-WP4C system, PCNN- 

PTF (RMSE=0.034 cm3 cm− 3) performed better than Rosetta 
(RMSE=0.063 cm3 cm− 3). A tendency to overestimate the VWC was 
observed for the PCNN-PTF (MBE=0.022 cm3 cm− 3). A more pronounced 
underestimation was observed for Rosetta (MBE = − 0.056 cm3 cm− 3), 
indicated by a high magnitude of negative bias. The correlation coeffi-
cient was greater than 0.90 for both models, showing an overall good 
agreement between the measured and the estimated VWC (Table 3). 
Larger and more complete databases with soil hydraulic properties 
measured with a standardized technique and uniform distribution of 
samples among soil classes should increase the predictive capability of a 
PTF (Vereecken et al., 2010). Since PCNN-PTF is a machine learning 
approach, its performance is expected to improve as more soil hydraulic 
data measured with HYPROP experiments becomes publicly available 
for training the model. 

The SWRCs estimated using the VG parameters obtained from the IM 
in HYDRUS-1D also showed reasonable accuracy with RMSE of 0.043 
cm3 cm− 3, indicating comparable performance to Rosetta. A slight un-
derestimation of the estimated VWC was observed (MBE = − 0.007 cm3 

cm− 3), which is also shown in Fig. 4. The agreement between the 
measured and estimated VWC was high (R=0.85) but lower than what 
was observed for the PCNN-PTF and Rosetta models (Table 3). In our 
study, all parameters of the VG model for SWRC were optimized using 
IM. Better results may be expected if parameters such as θs and θr are 
constrained within practical limits (Šimůnek et al., 1998a, 1998b). 
Nonetheless, results from our study indicate that in-situ SWRCs can 
serve as a reliable source for obtaining soil moisture information if lab- 
obtained SWRCs are not available. 

3.3. Performance of PTFs at wet, intermediate, and dry tension regions of 
the SWRC 

3.3.1. In-Situ SWRCs 
Table 4 shows the performance of PCNN-PTF and Rosetta for lab and 

in-situ measurements in three regions of the SWRC. In the wet range of 
the SWRC, PCNN-PTF (RMSE=0.008 cm3 cm− 3) performed better than 
Rosetta (RMSE=0.076 cm3 cm− 3) for the in-situ data. No considerable 
over or underestimation of the VWC was observed in the wet region by 
PCNN-PTF, whereas Rosetta underestimated at all the retention points 
(MBE = − 0.76 cm3 cm− 3). Similarly, PCNN-PTF performed better in the 
intermediate region (RMSE=0.023 cm3 cm− 3) than Rosetta 
(RMSE=0.080 cm3 cm− 3). A slight tendency for overestimation of VWC 
was observed for the PCNN-PTF (MBE=0.012 cm3 cm− 3), whereas un-
derestimation was observed for Rosetta (MBE = − 0.076 cm3 cm− 3) in 
the intermediate region. Both models showed comparable performance 
in the dry region of the SWRC, with PCNN-PTF performing slightly better 

Table 3 
Accuracy of the PCNN-PTFs, and Rosetta to estimate the laboratory and in-situ (May to September 2019) volumetric water content (cm3 cm− 3).   

Lab measurements (HYPROP+WP4C) In-situ measurements 
MPS6 + TDT (30 min) 

In-situ measurements 
MPS6 + TDT (daily average) 

PCNN-PTF RMSE MAE MBE R RMSE MAE MBE R RMSE MAE MBE R 
0.034 0.029 0.022 0.94 0.048 0.034 − 0.012 0.91 0.056 0.042 − 0.029 0.91 

Rosetta 0.063 0.057 − 0.056 0.91 0.082 0.079 − 0.079 0.90 0.084 0.081 − 0.081 0.90 

RMSE: Root mean square error (cm3 cm− 3), MAE: Mean absolute error (cm3 cm− 3), MBE: Mean biased error (cm3 cm− 3), R: Correlation coefficient. 
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(RMSE=0.083 cm3 cm− 3) than Rosetta (RMSE=0.087 cm3cm− 3). Both 
models underestimated the VWC in the dry region with MBE = − 0.073 
and − 0.085 cm3 cm− 3 for PCNN-PTF and Rosetta, respectively. R ranged 
from 0.55 in the dry region to 0.76 in the intermediate region for PCNN- 
PTF and from 0.24 in the wet region to 0.65 in the intermediate region 
for Rosetta. 

3.3.2. Laboratory SWRCs 
For the lab-obtained SWRCs, the lowest performance for the PCNN- 

PTF was observed in the wet region of SWRC (RMSE=0.038 cm3 cm− 3), 
where the model showed a tendency to overestimate the VWC for most 
of the soils (MBE=0.028 cm3 cm− 3) as also indicated in Fig. 4. The best 
performance was observed in the dry region (RMSE=0.026 cm3 cm− 3) 
followed by the intermediate region (RMSE=0.030 cm3 cm− 3). No 
substantial over or underestimation was observed in the dry range (MBE 

= − 0.005 cm3 cm− 3), whereas a slight overestimation of VWC was 
evident in the intermediate range (MBE=0.017 cm3 cm− 3). The R value 
was 0.68, 0.81, and 0.70 in the wet, intermediate, and dry regions of the 
SWRC, respectively. The better performance of PCNN-PTF in the inter-
mediate and dry region of SWRC compared to the wet region can be 
attributed to the lack of measured retention points at soil saturation (θs) 
in the training dataset (Singh et al., 2020) and strong nonlinearity in the 
measured data close to saturation. Although laboratory-measured θs is 
underestimated compared to the in-situ values because of incomplete 
saturation and air entrapment of the soil (Verbist et al., 2009; Wassar 
et al., 2016), overestimation in lab methods is also possible (Abbasi 
et al., 2003). The lack of measured data in the wet and dry regions of the 
SWRC can be addressed by including arbitrary data points to each soil 
sample of the training dataset as adopted by Haghverdi et al. (2018) by 
adding retention pair at oven-dry point (i.e., pF=6.8 and VWC=0 cm3 

Fig. 4. Scatterplots of measured and estimated volumetric water content using PCNN-PTF, Rosetta, and inverse modeling via HYDRUS-1D for the lab and in-situ 
measured data. The solid blue line is the 1:1 line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 4 
Performance of the PCNN-PTF and Rosetta model to estimate the volumetric water content (cm3 cm− 3) for the laboratory and in-situ measurements at wet (pF≤2) 
intermediate (2 < pF≤3) and dry (pF>3) parts of the SWRC.   

PCNN-PTF Rosetta  

Lab soil samples In Situ measurements (30 min) Lab soil samples In Situ measurements (30 min)  

pF≤2 2 < pF≤3 pF>3 pF≤2 2 < pF≤3 pF>3 pF≤2 2 < pF≤3 pF>3 pF≤2 2 < pF≤3 pF>3 

RMSE  0.038  0.030  0.026  0.008  0.023  0.083  0.061  0.070  0.027  0.076  0.080  0.087 
MAE  0.033  0.024  0.021  0.007  0.019  0.073  0.056  0.065  0.022  0.076  0.076  0.085 
MBE  0.028  0.017  − 0.005  0.000  0.012  − 0.073  − 0.056  − 0.065  − 0.014  − 0.076  − 0.076  − 0.085 
R  0.68  0.81  0.79  0.57  0.76  0.55  0.75  0.77  0.93  0.24  0.65  0.53 

RMSE: Root mean square error (cm3 cm− 3), MAE: Mean absolute error (cm3 cm− 3), MBE: Mean biased error (cm3 cm− 3), R: Correlation coefficient. 
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cm− 3). These arbitrary points, such as θs and θr estimated from other 
PTFs, can further enhance the performance of PCNN-PTF when training 
data sets are limited. 

For Rosetta, the lowest performance was observed in the interme-
diate region of SWRC (RMSE=0.070 cm3 cm− 3), where the model ten-
ded to underestimate soil moisture (MBE = − 0.065 cm3 cm− 3). The best 
performance was observed in the dry region (RMSE=0.027 cm3 cm− 3) 
followed by the wet range (RMSE=0.061 cm3 cm− 3). Underestimation 
was observed in both the dry (MBE = − 0.014 cm3 cm− 3) and wet (MBE 
= − 0.056 cm3 cm− 3) regions but was less pronounced compared to the 
intermediate region. The best agreement between the observed and 
estimated VWC was in the dry region, reflected by R value of 0.93, 
followed by the intermediate and wet regions with R values of 0.77 and 
0.75, respectively (Table 4). 

As per the SWRCs obtained from the IM (Table 5), the lowest per-
formance was observed in the dry region (RMSE=0.071 cm3 cm− 3), 
followed by the wet region (RMSE=0.042 cm3 cm− 3). The best perfor-
mance was observed in the intermediate region (RMSE=0.036 cm3 

cm− 3) and with slight overestimation, as indicated by MBE of 0.014 cm3 

cm− 3. Underestimation of the VWC was observed in the wet region 
(MBE = − 0.031 cm3 cm− 3), whereas overestimation was observed in the 
dry region (MBE=0.063 cm3 cm− 3), as reflected in Fig. 4, where most of 
the data points are above the 1:1 line at lower VWC and below the line at 
the higher values of VWC. 

3.4. Novelty and limitations of this study and directions for future 
research 

The novelty of this work was threefold. Firstly, we addressed a 
research gap by comparing in-situ soil water retention measurements 
with HYPROP-WP4C measurements and HYPROP-based PCNN-PTF es-
timations of the SWRC. Secondly, we utilized calibrated sensor mea-
surements to create a comprehensive field-based soil tension and water 
content dataset for inverse modeling of the SWRC using HYDRUS-1D. 
Thirdly, we developed the first web application for estimating the 
SWRC using the PCNN-PTF approach. 

This study only focused on measuring and estimating SWRC. We 
recommend further studies to investigate the differences between soil 
hydraulic conductivity curves obtained in the lab versus field mea-
surements and evaluate the performance of hydraulic conductivity PTFs 
such as the PCNN-PTF developed by Singh et al. (2021) for new soils and 
under field conditions. 

The HYPROP-WP4C system, similar to other standard laboratory 

techniques, only measured the main drying SWRC, while sensor pairing 
in the field captures both drying and wetting branches of the SWRC. We 
showed that the HYPROP-based PCNN-PTF can provide a reasonable 
estimation of soil water retention under field conditions, albeit at lower 
accuracy than laboratory data. Cautions should be made, however, for 
future field applications since PCNN-PTF only estimates the main drying 
curve, while field data encompass wetting and drying cycles. Therefore, 
we recommend that future lab-based PTFs be developed to estimate both 
main drying and wetting curves (as the upper and lower bounds) to 
better capture soil moisture dynamics under natural field conditions. In 
addition, we leave it to future research to determine if new sets of PTFs 
could be developed based on field data and sensor pairing techniques. 

A limitation of the MPS6 sensor is its requirement for equilibrium to 
provide soil tension measurements, which may not correspond to 
instantaneous TDT-based soil moisture measurements. This may impact 
sensor pairing data when soil moisture changes in short timestamps, 
such as during irrigation events. Additionally, MPS6 sensors did not 
capture the very wet soil condition close to saturation since it is outside 
the sensor’s measurement range. 

We did not consider hysteresis during inverse modeling and leave it 
to future research to determine whether that could enhance the per-
formance of the inverse modeling approach using HYDRUS-1D. 

4. Conclusion 

In this study, the PCNN-PTF approach was employed to estimate the 
complete soil water retention curve (SWRC) using soil texture (SSC) and 
bulk density (BD). The PCNN-PTF was trained using a combination of 
previously published international and Turkish datasets, all measured 
through evaporation experiments and HYPROP. The HYPROP system 
offers the advantage of providing a quasi-continuous description of the 
retention function within the tensiometric moisture range (up to pF 3), 
with dry-end (pF>4) measurements obtained using the WP4C Dew Point 
PotentioMeter. Our PCNN-PTF demonstrated superior performance 
compared to Rosetta in estimating soil water content data in both lab-
oratory settings and field conditions. Particularly for in-situ soil mois-
ture measurements, PCNN-PTF provided a more accurate estimation of 
SWRC than Rosetta in the intermediate region, although caution is 
advised in the wet region. Inverse modeling of VG parameters from in- 
situ soil moisture data reasonably estimated VWC in the intermediate 
region. Unlike the HYPROP-WP4C system, the in-situ SWRCs created in 
this study did not cover the entire soil moisture range from saturation to 
dryness, mainly due to limitations in the measurement range of soil 
moisture sensors. Field data also exhibited more scattering, primarily 
attributed to hysteresis induced by wetting and drying cycles. Never-
theless, field sensors are increasingly used due to advancements in 
irrigation technology, generating substantial data. Therefore, it is 
crucial to explore the utility of directly using field-collected data for soil 
hydrological estimations. Our results indicate that PCNN-PTF could serve 
as an essential tool for future research in this direction. 
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Table 5 
Performance of the van Genuchten model parametrized using inverse modeling 
of the in-situ soil moisture data.  

HYDRUS-1D (Inverse Modeling) vs Lab 

Plot RMSE MAE MBE R 

39–3  0.055  0.047  − 0.037  0.90 
39–7  0.046  0.038  0.017  0.96 
44–3  0.042  0.035  0.021  0.96 
44–7  0.038  0.033  − 0.007  0.83 
49–3  0.028  0.025  − 0.003  0.97 
49–7  0.029  0.025  0.003  0.95 
56–3  0.046  0.039  0.001  0.95 
62–3  0.048  0.041  − 0.026  0.99 
62–7  0.038  0.031  − 0.02  0.99 
66–3  0.035  0.029  0.017  0.99 
66–7  0.053  0.05  − 0.043  0.98  

For different regions of the SWRC 
pF≤2  0.042  0.036  − 0.031  0.57 
2 < pF≤3  0.036  0.030  0.014  0.58 
pF>3  0.071  0.063  0.063  0.66 

RMSE: Root mean square error (**cm3 cm− 3), MAE: Mean absolute error (cm3 

cm− 3), MBE: Mean biased error (cm3 cm− 3), R: Correlation coefficient. 
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